x+|x|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that f(x)={((x-|x|)/x, x!=0),( 2 , x=0):} is discontinuous at x=0 .

Find lim_(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}

Find lim_(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}

Consider the function f(x)={:{(x^(2)|x|x!=0),(" 0 "x=0):}} what is f'(0) equal to ?

If f(x)={(x-|x|)/x ,x!=0 ,x=0,s howt h a t("lim")_(xto0) f(x) does not exist.

3x -x= 0 then x =________

If f(x)={(x-|x|)/x ,x!=0, 2,x=0 , show that lim_(xrarr0) f(x) does not exist.

If (x)={-x,x>0 and x,x<0=0,x=0 then test the continuity of f(x) at x=0

If f(x)={(x^(2))/(|x|),x!=0,0,x=0 then