Home
Class 11
MATHS
log[e^(x)((x-2)/(x+2))^((3)/(4))]...

log[e^(x)((x-2)/(x+2))^((3)/(4))]

Promotional Banner

Similar Questions

Explore conceptually related problems

y=log[e^(3x)*((x-4)/(x+3))^(2/3)], find (dy)/(dx)

Integrate w.r.t x,x log x(A)(1)/(4)x^(2)log((x^(2))/(e))+k(B)(1)/(2)x^(2)log((x^(2))/(e))+k (C) (1)/(4)x^(2)log((x)/(e))+k(D) NONE

If f((3t-4)/(3t+4))=t+2 then int f(x)dx= (A) e^(x-2)log((3x-4)/(3x+4))(B)-(8)/(3)log|1-x|+2(x)/(3)+c(C)(8)/(3)log|1-x|+(x)/(3)+c(D)e^(x+2)log|(1+x)/(1-x)|+c

If y=tan^(-1)[(log(e//x^(3)))/(log(ex^(3)))]+tan^(-1)[(log(e^(4)x^(3)))/(log(e//x^(12)))]," then "(d^(2)y)/(dx^(2))=

A : (a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)((a-b)/(a))^(3)+....=log_(e)((a)/(b)) R : log_(e)(1-x)=-x-(x^(2))/(2)-(x^(3))/(3)-(x^(4))/(4)-....

Let a=int_0^(log2) (2e^(3x)+e^(2x)-1)/(e^(3x)+e^(2x)-e^x+1)dx , then 4e^a =

Let a=int_0^(log2) (2e^(3x)+e^(2x)-1)/(e^(3x)+e^(2x)-e^x+1)dx , then 4e^a =

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

Solve: 4log_((x)/(2))(sqrt(x))+2log_(4x)(x^(2))=3log_(2x)(x^(3))