Home
Class 12
MATHS
I(0)x^(y)=e^(x-y)" show that "(dy)/(dx)=...

I_(0)x^(y)=e^(x-y)" show that "(dy)/(dx)=(log x)/((1+log x)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))