Home
Class 12
MATHS
" The value of "lim(n rarr oo)((1^(k)+2^...

" The value of "lim_(n rarr oo)((1^(k)+2^(k)+3^(k)+...+n^(k))/(n^(k+1)))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

k ne -1 is a constant. The value of lim_(n to oo)(1^k + 2^k + …. + n^k)/(k(n^(k+1))) is

lim_(n toinfty)[(1^(k) +2^(k)+3^(k) +. . .. +n^(k))/(n^(k +1))]=

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

Evaluate lim_(n rarr oo)(2^(k) + 4^(k) + 6^(k)+…+(2n)^(k))/(n^(k+1)) by using the method of finding definite integral as the limit of a sum.

The value of lim_(n rarr oo)sum_(k=1)^(n)(6^(k))/((3^(k)-2^(k))(3^(k+1)-2^(k+1))) is equal to

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

lim_ (n rarr oo) (1 ^ (k) + 2 ^ (k) + ... + n ^ (k)) / (k * n ^ (k + 1)), (n in N, k in I ^ (+))

The value of Lim_(n rarr oo)sum_(k=1)^(n)(n-k)/(n^(2))cos((4k)/n) equals