Home
Class 14
MATHS
((243)(x)/(5)times3^(2x+1))/(9^(x)*3^(x-...

((243)(x)/(5)times3^(2x+1))/(9^(x)*3^(x-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

If ((243)^((n)/(5))3^(2n+1))/(9^(n)3^(n-1))=x, then the value of x is

Lt_(xto0)((729)^(x)-(243)^(x)-(81)^(x)+9^(x)+3^(x)-1)/x^(3)

lim_(xto0) ((729)^(x)-(243)^(x)-(81)^(x)+9^(x)+3^(x)-1)/(x^(3))

lim_(xto0) ((729)^(x)-(243)^(x)-(81)^(x)+9^(x)+3^(x)-1)/(x^(3))

Evaluate: lim_(x rarr0)((729)^(x)-(243)^(x)-(811)^(x)+9^(x)+3^(x)-1)/(x^(3))

The value of: (9^(x)(9^(x-1)))^(x)/(9^(x+1).3^(2x-2)){(729^(x/3))/81}^(-x) + (3^(a) -2^(3) .3^(a-2))/(3^(a) -3^(a-1)) is:

(5x)/(3)-(x-2)/(3)=(9)/(4)-(1)/(2)(x-(2x-1)/(3))

The value of f(0), so that the function f(x)=((27-2x)^((1)/(3))-3)/(9-3(243+5x)^(1/5))(x!=0) is continuous,is given by (a) (2)/(3)(b)6(c)2(d)4

Simplify: (0.001)^((1)/(3))( ii) ((25)^((3)/(2))x(243)^((3)/(5)))/((16)^((5)/(4))x(8)^((4)/(3)))