Home
Class 11
PHYSICS
The values of sintheta(1), cos^(2)theta(...

The values of `sintheta_(1), cos^(2)theta_(2)` and `tan theta_(3)` are given as `.^(1)//_(2), -.^(1)//_(2)` and `3` (not in order), for some angles `theta_(1), theta_(2)` and `theta_(3)`. Choose incorrect statement.A

A

The value of `tan theta_(3)` could be `-0.5`

B

The value of `sintheta_(1)` can not be `3`.

C

The value of `cos^(2)theta_(2)` can't be `-0.5`

D

The value of `cos^(2)theta_(2)` could be `3`.

Text Solution

Verified by Experts

The correct Answer is:
D

`-1 le sin theta_(1) le 1, 0 le cos^(2) theta_(2) le 1, -oo lt tan theta_(3) lt oo`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

The value of (2(sin2 theta+2cos^(2)theta-1))/(cos theta-sin theta-cos3 theta+sin3 theta)=

Write the value of sin^(2)theta cos^(2)theta(1+tan^(2)theta)(1+cot^(2)theta).

If sin^(2)theta_(1)+sin^(2)theta_(2)+sin^(2)theta_(3)+sin^(2)theta_(4)=0 then which of the following cannot be the value of cos theta_(1)+cos theta_(2)+cos theta_(3)+cos theta_(4)

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

theta_(1),theta_(2),theta_(3) are angles of 1^(st) quadrant if tan theta_(1) = cos theta_(1), tan theta_(2) = cosec theta_(2), cos theta_(3)=theta_(3) . Which of the following is not true ?

If sin^(2)theta_(1)+sin^(2)theta_(2)+sin^(2)theta_(3)=0, then which of the following is not the possible value of cos theta_(1)+cos theta_(2)+cos theta_(3)?3(b)-3(c)-1(d)-2

If sin theta_(1)+sin theta_(2)+sin theta_(3), then find the value of cos theta_(1)+cos theta_(2)+cos theta_(3)

If cos theta_(1)+cos theta_(2)+cos theta_(3)=-3 where theta_(1),theta_(2),theta_(3)in[0,2 pi] then value sin((theta_(1))/(2))+sin((theta_(2))/(2))+sin((theta_(3))/(2)) is

if tan theta_(1)=k cot theta_(2) then find (cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))=