Home
Class 11
PHYSICS
The average value of alternating current...

The average value of alternating current `I=I_(0) sin omegat` in time interval `[0, pi/omega]` is

A

`(2I_(0))/pi`

B

`2I_(0)`

C

`(4I_(0))/pi`

D

`I_(0)/pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the average value of the alternating current \( I = I_0 \sin(\omega t) \) over the time interval \([0, \frac{\pi}{\omega}]\), we can follow these steps: ### Step 1: Understand the formula for average value The average value of a function \( I(t) \) over the interval \([a, b]\) is given by: \[ I_{\text{avg}} = \frac{1}{b-a} \int_a^b I(t) \, dt \] In our case, \( I(t) = I_0 \sin(\omega t) \), \( a = 0 \), and \( b = \frac{\pi}{\omega} \). ### Step 2: Set up the integral Substituting the values into the formula, we have: \[ I_{\text{avg}} = \frac{1}{\frac{\pi}{\omega} - 0} \int_0^{\frac{\pi}{\omega}} I_0 \sin(\omega t) \, dt \] This simplifies to: \[ I_{\text{avg}} = \frac{\omega}{\pi} \int_0^{\frac{\pi}{\omega}} I_0 \sin(\omega t) \, dt \] ### Step 3: Factor out constants Since \( I_0 \) is a constant, we can factor it out of the integral: \[ I_{\text{avg}} = \frac{\omega I_0}{\pi} \int_0^{\frac{\pi}{\omega}} \sin(\omega t) \, dt \] ### Step 4: Integrate \( \sin(\omega t) \) To integrate \( \sin(\omega t) \), we use the substitution \( u = \omega t \), which gives \( du = \omega dt \) or \( dt = \frac{du}{\omega} \). The limits change from \( t = 0 \) to \( t = \frac{\pi}{\omega} \) to \( u = 0 \) to \( u = \pi \): \[ \int_0^{\frac{\pi}{\omega}} \sin(\omega t) \, dt = \int_0^{\pi} \sin(u) \frac{du}{\omega} = \frac{1}{\omega} \int_0^{\pi} \sin(u) \, du \] ### Step 5: Evaluate the integral The integral \( \int_0^{\pi} \sin(u) \, du \) evaluates to: \[ \int_0^{\pi} \sin(u) \, du = [-\cos(u)]_0^{\pi} = -\cos(\pi) - (-\cos(0)) = 1 + 1 = 2 \] Thus, we have: \[ \int_0^{\frac{\pi}{\omega}} \sin(\omega t) \, dt = \frac{2}{\omega} \] ### Step 6: Substitute back into the average value formula Substituting this back into our expression for \( I_{\text{avg}} \): \[ I_{\text{avg}} = \frac{\omega I_0}{\pi} \cdot \frac{2}{\omega} = \frac{2 I_0}{\pi} \] ### Final Answer The average value of the alternating current \( I \) over the interval \([0, \frac{\pi}{\omega}]\) is: \[ \boxed{\frac{2 I_0}{\pi}} \]

To find the average value of the alternating current \( I = I_0 \sin(\omega t) \) over the time interval \([0, \frac{\pi}{\omega}]\), we can follow these steps: ### Step 1: Understand the formula for average value The average value of a function \( I(t) \) over the interval \([a, b]\) is given by: \[ I_{\text{avg}} = \frac{1}{b-a} \int_a^b I(t) \, dt \] In our case, \( I(t) = I_0 \sin(\omega t) \), \( a = 0 \), and \( b = \frac{\pi}{\omega} \). ...
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

What is the average value of atlernating current, I = I_(0) sin omega t over time interval t = pi//omega to t = pi//omega ?

Find the average value I_(m) of alternating current intensity over time interval from 0 to (pi)/(omega)

The average value of an alternating voltage V=V_(0) sin omega t over a full cycle is

The average value of a.c. voltge E =E_(0) sin omega t over the time interval t = 0 to t = pi//omega is

The average value of alternating current for half cycle in terms of I_(0) is

The average value of current i=I_(m) sin omega t from t=(pi)/(2 omega ) to t=(3 pi)/(2 omega) si how many times of (I_m) ?

Give expression for average value of a.c. voltage V = V_(0) sin omega t over interval t = 0 to t = (pi)/(omega)

A wire carries an alternating current i=i_0 sin omega t. In there an electric field in the vicinity of the wire?

Find the rms value of current i=I_(m)sin omegat from (i) t=0 "to" t=(pi)/(omega) (ii) t=(pi)/(2omega) "to" t=(3pi)/(2omega)

An alternating current I=I_(0) sin omega t is flowing in a circuit.The ratio of rms current in the interval of 0 to T the average current in the circuit for the time interval from T/8 to 3T/8 (Where T is time period) is :