Home
Class 11
PHYSICS
Vector product of three vectors is given...

Vector product of three vectors is given by `vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B))`
The plane of vector `vec(A)xx(vec(A)xxvec(B))` lies in the plane of

A

`vec(A)`

B

`vec(B)`

C

`vec(A)xxvec(B)`

D

`vec(A)` & `vec(B)`

Text Solution

Verified by Experts

The correct Answer is:
D

`vec(A)xx(vec(A)xxvec(B))=vec(A)(vec(A).vec(B))-vec(B)(vec(A).vec(A))rArr` this vector lies in plane of `vec(A)` & `vec(B)`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The value of hat(i)xx(hat(j)xxhat(k)) is

If for two vectors vec(A) and vec(B), vec(A)xxvec(B)=0 , the vectors

Assertion: vec(A)xxvec(B) is perpendicualr to both vec(A)-vec(B) as well as vec(A)-vec(B) Reason: vec(A)xxvec(B) as well as vec(A)-vec(B) lie in the plane containing vec(A) and vec(B) , but vec(A)xxvec(B) lies perpendicular to the plane containing vec(A) and vec(B) .

The scalar triple product (vec(A)xxvec(B)).vec(C) of three vectors vec(A), vec(B), vec(C) determines

Let vec(a), vec(b), vec(c) be non-coplanar vectors and vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)]) . What is the value of (vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r) ?

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a), vec c xx (vec a xxvec b) are

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a) and vec c xx (vec a xxvec b) are

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to