Home
Class 11
PHYSICS
Vector product of three vectors is given...

Vector product of three vectors is given by `vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B))`
The value of `hat(i)xx(hat(i)xxhat(j))+hat(j)xx(hat(j)xxhat(k))+hat(k)xx(hat(k)xxhat(i))` is

A

`hat(i)+hat(j)+hat(k)`

B

`-hat(i)-hat(j)-hat(k)`

C

`vec(0)`

D

`-3hat(i)-3hat(j)-3hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
B

`Sigmahat(i)xx(hat(i)xxhat(j))=Sigmahat(i)(hat(i).hat(j))-hat(j)(hat(i).hat(i))=-Sigmahat(j)=-(hat(i)+hat(j)+hat(k))`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

Vector product of three vectors is given by vec(A)xx(vec(B)xxvec(C))=vec(B)(vec(A).vec(C))-vec(C)(vec(A).vec(B)) The value of hat(i)xx(hat(j)xxhat(k)) is

Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)+2hat(k) .

verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

hat i xx(vec a xxhat i)+hat j xx(vec a xxhat j)+hat k xx(vec a xxhat k) is equal to

Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

Prove that hat i xx(vec a xxhat i)hat j xx(vec a xxhat j)+hat k xx(vec a xxhat k)=2vec a

For any vector vec(a) , the value of |vec(a) xx hat(i)|^(2) + |vec(a) xx hat(j)|^(2) + |vec(a) xx hat(k)|^(2) is equal to

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

The value of (vec r*hat i)(vec r xxhat i)+(vec r*hat j)(vec r xxhat j)+(vec r*hat k)(vec r xxhat k) is equal to '