Home
Class 11
PHYSICS
If vec(A)=hat(i)+2hat(j)+3 hat(k), vec(B...

If `vec(A)=hat(i)+2hat(j)+3 hat(k), vec(B)=-hat(i)+hat(j)+4hat(k)` and `vec(C)=3hat(i)-3hat(j)-12 hat(k)`, then find the angle between the vectors `(vec(A)+vec(B)+vec(C))` and `(vec(A)xxvec(B))` in degrees.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \vec{A} + \vec{B} + \vec{C} \) and \( \vec{A} \times \vec{B} \), we will follow these steps: ### Step 1: Calculate \( \vec{A} + \vec{B} + \vec{C} \) Given: \[ \vec{A} = \hat{i} + 2\hat{j} + 3\hat{k} \] \[ \vec{B} = -\hat{i} + \hat{j} + 4\hat{k} \] \[ \vec{C} = 3\hat{i} - 3\hat{j} - 12\hat{k} \] Now, we will add these vectors together: \[ \vec{A} + \vec{B} + \vec{C} = (\hat{i} - \hat{i} + 3\hat{i}) + (2\hat{j} + \hat{j} - 3\hat{j}) + (3\hat{k} + 4\hat{k} - 12\hat{k}) \] Calculating each component: - For \( \hat{i} \): \( 1 - 1 + 3 = 3 \) - For \( \hat{j} \): \( 2 + 1 - 3 = 0 \) - For \( \hat{k} \): \( 3 + 4 - 12 = -5 \) Thus, \[ \vec{A} + \vec{B} + \vec{C} = 3\hat{i} + 0\hat{j} - 5\hat{k} = 3\hat{i} - 5\hat{k} \] ### Step 2: Calculate \( \vec{A} \times \vec{B} \) Using the determinant to find the cross product: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 1 & 4 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ -1 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} = (2)(4) - (3)(1) = 8 - 3 = 5 \) 2. \( \begin{vmatrix} 1 & 3 \\ -1 & 4 \end{vmatrix} = (1)(4) - (3)(-1) = 4 + 3 = 7 \) 3. \( \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = (1)(1) - (2)(-1) = 1 + 2 = 3 \) Putting it all together: \[ \vec{A} \times \vec{B} = 5\hat{i} - 7\hat{j} + 3\hat{k} \] ### Step 3: Calculate the angle between \( \vec{A} + \vec{B} + \vec{C} \) and \( \vec{A} \times \vec{B} \) Let \( \vec{X} = \vec{A} + \vec{B} + \vec{C} = 3\hat{i} - 5\hat{k} \) and \( \vec{Y} = \vec{A} \times \vec{B} = 5\hat{i} - 7\hat{j} + 3\hat{k} \). Using the formula for the angle \( \theta \) between two vectors: \[ \cos \theta = \frac{\vec{X} \cdot \vec{Y}}{|\vec{X}| |\vec{Y}|} \] ### Step 4: Calculate \( \vec{X} \cdot \vec{Y} \) Calculating the dot product: \[ \vec{X} \cdot \vec{Y} = (3\hat{i} - 5\hat{k}) \cdot (5\hat{i} - 7\hat{j} + 3\hat{k}) = (3)(5) + (0)(-7) + (-5)(3) = 15 + 0 - 15 = 0 \] ### Step 5: Calculate the magnitudes \( |\vec{X}| \) and \( |\vec{Y}| \) Calculating the magnitude of \( \vec{X} \): \[ |\vec{X}| = \sqrt{3^2 + 0^2 + (-5)^2} = \sqrt{9 + 0 + 25} = \sqrt{34} \] Calculating the magnitude of \( \vec{Y} \): \[ |\vec{Y}| = \sqrt{5^2 + (-7)^2 + 3^2} = \sqrt{25 + 49 + 9} = \sqrt{83} \] ### Step 6: Find \( \cos \theta \) Substituting into the cosine formula: \[ \cos \theta = \frac{0}{\sqrt{34} \cdot \sqrt{83}} = 0 \] ### Step 7: Determine the angle \( \theta \) Since \( \cos \theta = 0 \), this implies: \[ \theta = 90^\circ \] ### Final Answer The angle between the vectors \( \vec{A} + \vec{B} + \vec{C} \) and \( \vec{A} \times \vec{B} \) is \( 90^\circ \).

To find the angle between the vectors \( \vec{A} + \vec{B} + \vec{C} \) and \( \vec{A} \times \vec{B} \), we will follow these steps: ### Step 1: Calculate \( \vec{A} + \vec{B} + \vec{C} \) Given: \[ \vec{A} = \hat{i} + 2\hat{j} + 3\hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a) = 5 hat(i) - hat(j) - 3 hat(k) and vec(b) = hat(i) + 3 hat(j) - 5 hat(k) , find the angle between vec(a) and vec(b) .

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

Given the vectors vec(A)=2hat(i)+3hat(j)-hat(k) vec(B)=3hat(i)-2hat(j)-2hat(k) & " " vec(c)=phat(i)+phat(j)+2phat(k) Find the angle between (vec(A)-vec(B)) & vec(C)

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j) , then find vec(a).(vec(b)xx vec(c )) and (vec(b)xx vec(c )).vec(a) .