Home
Class 11
PHYSICS
{:("Column- I",,"Column II",),("(Operati...

`{:("Column- I",,"Column II",),("(Operation of nonzero vectors" vec(P) "and" vec(Q)")",,"(Possivle angle between" vec(P) "and" vec(Q) ")",),((A) |vec(P)xxvec(Q)|=0,,(P)" "90^(@),),((B) |vec(P)xxvec(Q)|=sqrt(3)vec(P).vec(Q),,(Q)" "180^(@),),((C) vec(P)+vec(Q)=vec(R) and P+Q=R,,(R)" "60^(@),),((D)|vec(P)+vec(Q)|=|vec(P)-vec(Q)|,,(S)" "0^(@),),(,,(T)" "30^(@),):}`

Text Solution

Verified by Experts

The correct Answer is:
`(A) rarr Q, S; (B) rarr R; (C) rarr S; (D) rarr P`

For (A) `|vec(P)xxvec(Q)|=0 rArr` Angle between `vec(P)` & `vec(Q)` is `0^(@)` or `180^(@)`
For (B) `|PQ sin theta|=sqrt(3) PQ cos theta rArr |sin theta|=sqrt(3) cos theta`
Here `cos theta` must be positive so `theta=60^(@)`
For (C) Here `P^(2)+Q^(2)+2PQ cos theta=P^(2)+Q^(2)+2PQ rArr cos theta=1 rArr theta=0^(@)`
For (D) Here `P^(2)+Q^(2)+2PQ cos theta=P^(2)+Q^(2)-2PQ cos theta rArr cos theta=0, rArr theta=90^(@)`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example|61 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Part -II Example Some worked out Examples|1 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

Two vectors vec P and vec Q

If vec(P).vec(Q)= PQ , then angle between vec(P) and vec(Q) is

If |vec(P) + vec(Q)| = |vec(P) - vec(Q)| , find the angle between vec(P) and vec(Q) .

Given vec(p)*(vec(P)+vec(Q))=P^(2) then the angle between vec(P)andvec(Q) is

What can be the angle between (vec(P) + vec(Q)) and (vec(P) - vec(Q)) ?

If |vec P xx vec Q|=PQ then the angle between vec P and vec Q is

The resultant vec(P) and vec(Q) is perpendicular to vec(P) . What is the angle between vec(P) and vec(Q) ?

What is the anlge between vec P xx vec Q and vec Q xx vec P is

What is the angle between vec(P) and the resultant of (vec(P)+vec(Q)) and (vec(P)-vec(Q)) ?

if vec(P) xx vec(R ) = vec(Q) xx vec(R ) , then