Home
Class 11
PHYSICS
If the position vector of the vertices o...

If the position vector of the vertices of a triangle are `hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k)` & `3hat(i)-hat(j)+2hat(k)`, then find the area of the triangle.

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle given the position vectors of its vertices, we can follow these steps: ### Step 1: Identify the position vectors The position vectors of the vertices of the triangle are given as: - \( \mathbf{A} = \hat{i} - \hat{j} + 2\hat{k} \) - \( \mathbf{B} = 2\hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{C} = 3\hat{i} - \hat{j} + 2\hat{k} \) ### Step 2: Find the vectors representing two sides of the triangle We can find two vectors that represent the sides of the triangle: - Vector \( \mathbf{AB} = \mathbf{B} - \mathbf{A} \) - Vector \( \mathbf{AC} = \mathbf{C} - \mathbf{A} \) Calculating \( \mathbf{AB} \): \[ \mathbf{AB} = (2\hat{i} + \hat{j} + \hat{k}) - (\hat{i} - \hat{j} + 2\hat{k}) = (2 - 1)\hat{i} + (1 + 1)\hat{j} + (1 - 2)\hat{k} = \hat{i} + 2\hat{j} - \hat{k} \] Calculating \( \mathbf{AC} \): \[ \mathbf{AC} = (3\hat{i} - \hat{j} + 2\hat{k}) - (\hat{i} - \hat{j} + 2\hat{k}) = (3 - 1)\hat{i} + (-1 + 1)\hat{j} + (2 - 2)\hat{k} = 2\hat{i} + 0\hat{j} + 0\hat{k} = 2\hat{i} \] ### Step 3: Calculate the cross product of the two vectors Now we need to find the cross product \( \mathbf{AB} \times \mathbf{AC} \): \[ \mathbf{AB} = \hat{i} + 2\hat{j} - \hat{k}, \quad \mathbf{AC} = 2\hat{i} \] Using the determinant method: \[ \mathbf{AB} \times \mathbf{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 2 & 0 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & -1 \\ 0 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} \] Calculating each of the 2x2 determinants: \[ = \hat{i} (2 \cdot 0 - (-1) \cdot 0) - \hat{j} (1 \cdot 0 - (-1) \cdot 2) + \hat{k} (1 \cdot 0 - 2 \cdot 2) \] \[ = 0\hat{i} - 2\hat{j} - 4\hat{k} \] Thus, \[ \mathbf{AB} \times \mathbf{AC} = -2\hat{j} - 4\hat{k} \] ### Step 4: Find the magnitude of the cross product Now, we calculate the magnitude of the cross product: \[ |\mathbf{AB} \times \mathbf{AC}| = \sqrt{(-2)^2 + (-4)^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5} \] ### Step 5: Calculate the area of the triangle The area \( A \) of the triangle is given by: \[ A = \frac{1}{2} |\mathbf{AB} \times \mathbf{AC}| = \frac{1}{2} (2\sqrt{5}) = \sqrt{5} \] Thus, the area of the triangle is \( \sqrt{5} \) square units.

To find the area of the triangle given the position vectors of its vertices, we can follow these steps: ### Step 1: Identify the position vectors The position vectors of the vertices of the triangle are given as: - \( \mathbf{A} = \hat{i} - \hat{j} + 2\hat{k} \) - \( \mathbf{B} = 2\hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{C} = 3\hat{i} - \hat{j} + 2\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise EXERCISE-5(A)|15 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Exersice -05(B)|20 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Exercise-04 [A]|28 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

If the position vectors of the vertices of a triangle be 2hat(i)+4hat(j)-hat(k), 4hat(i)+5hat(j)+hat(k) and 3hat(i)+6hat(j)-3hat(k) , then the triangle is

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), hat(i)-3hat(k) and -hat(i)+5hat(j)+hat(k) respectively, then angle ABC is equal to

Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) on 2hat(i)+6hat(j)+3hat(k)

Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) on hat(i)-2hat(j)+hat(k) .