Home
Class 11
PHYSICS
A particle moves in such a way that its ...

A particle moves in such a way that its position vector at any time t is `vec(r)=that(i)+1/2 t^(2)hat(j)+that(k)`.
Find as a function of time:
(i) The velocity `((dvec(r))/(dt))` (ii) The speed `(|(dvec(r))/(dt)|)` (iii) The acceleration `((dvec(v))/(dt))`
(iv) The magnitude of the acceleration
(v) The magnitude of the component of acceleration along velocity (called tangential acceleration)
(v) The magnitude of the component of acceleration perpendicular to velocity (called normal acceleration).

Text Solution

Verified by Experts

The correct Answer is:
(i) `hat(i)+that(j)+hat(k)`, (ii) `sqrt(t^(2)+2)`, (iii) `hat(j)`, (iv) `t//sqrt(t^(2)+2)`, (vi) `sqrt(2)//sqrt(t^(2)+2)`

`vec(r)=that(i)+t^(2)/2hat(j)+that(k)`
(i) `vec(v)=(dvec(r))/(dt)=hat(i)+that(j)+hat(k)" "` (iii) speed `|vec(v)|=sqrt(t^(2)+2)`
(iii) `vec(a)=(dvec(v))/(dt)=hat(j)" "` (iv) `|vec(a)|=1`
(v) `vec(a)_(T)=(vec(a).hat(v))hat(v)=([hat(j)((hat(i)+that(j)+hat(k)))/(sqrt(t^(2))+2)])((hat(i)+that(j)+hat(k)))/sqrt(t^(2)+2)`
`vec(a)_(T)=(t/sqrt(t^(2)+2))hat(v)=(t(hat(i)+that(j)+hat(k)))/((t^(2)+2)), |vec(a)_(T)|=t/sqrt(t^(2)+2)`
As `a_(N)^(2)+a_(T)^(2)=a^(2)`
so `a_(N)=sqrt(a^(2)-a_(T)^(2))=sqrt(2)/sqrt(t^(2)+2)`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise EXERCISE-5(A)|15 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Exersice -05(B)|20 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Exercise-04 [A]|28 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos