Home
Class 12
MATHS
" 26"sin^(5)x-cos^(5)x=(1)/(cos x)-(1)/(...

" 26"sin^(5)x-cos^(5)x=(1)/(cos x)-(1)/(sin x),(sin x!=cos x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation sin^(5)x-cos^(5)x=(1)/(cos x)-(1)/(sin x)(sin x!=cos x)

int(cos x+3sin x-5dx)/(3(1-sin x)-cos x)

int(sin x cos x)/(1+sin x+cos x)

(cos x)/(1-sin x)=(1+cos x+sin x)/(1+cos x-sin x)

The minimum value of sin x((1-cos x)/(sin x)+(sin x)/(1-cos x)) is

Maximum value of cos x((cos x)/(1-sin x)+(1-sin x)/(cos x))

1- (sin ^ (2) x) / (1 + cos x) + (1 + cos x) / (sin x) - (sin x) / (1-cos x) =

The maximum value of cos x ((cos x )/( 1- sin x) + (1- sin x)/( cos x) ) is

Integrate the following: int{(5cos^(3)x+2sin^(3)x)/(2sin^(2)x*cos^(2)x)+sqrt(1+sin2x)+(1+2sin x)/(cos^(2)x)+(1-cos2x)/(1+cos2x)}dx