Home
Class 11
MATHS
" If "g(x)=-sqrt(25-x^(2))" ,then "lim(x...

" If "g(x)=-sqrt(25-x^(2))" ,then "lim_(x rarr1)(g(x)-g(1))/(x-1)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (g(x)-g(1))/(x-1) =

If G(x)=-sqrt(25-x^(2)) , then lim_(xrarr1) (G(x)-G(1))/(x-1)=?

If f(x)=-sqrt(25-x^(2)) then find lim_(x rarr1)(f(x)-f(1))/(x-1)

If G(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (G(x)-G(1))/(x-1) =

If F(x)=sqrt(9-x^(2)), then what is lim_(x rarr1)(F(x)-F(1))/(x-1) equal to

If G(x) = -sqrt(25-x^2) then lim_(x to 1) (G(x)-G(1))/(x-1) = ?

If G(x)=-sqrt(25-x^(2)), then lim_(x rarr1)(G(x)-G(1))/(x-1)is (a) (1)/(24) (b) (1)/(5)(c)-sqrt(24) (d) none of these

If g(x) = 1/sqrt(9+x^(2) then lim_(x rarr 4) ((g(x) - g(4))/(x-4) =

If G(x)=-sqrt(25-x) . Then lim_(xrarr1) (G(x)-G(1))/(x-1) has the value