Home
Class 12
MATHS
If alpha, beta, gamma are the roots of t...

If `alpha, beta, gamma` are the roots of the equation `2x^3-3x^2 + 6x + 1 =0,` then `alpha^2 + beta^2 + gamma^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta, gammaare the roots of the equation 2x^(3)-3x^(2)+6x+1=0, then alpha^(2)+beta^(2)+gamma^(2) is equal to

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha, beta, gamma are the roots of the equation x^(3) - 6x^(2) + 11x - 6 = 0 and if a = alpha^(2) + beta^(2) + gamma^(2) , b = alpha beta + beta gamma + gamma alpha and c = (alpha + beta) (beta + gamma)(gamma + alpha), then the correct inequality among the following is :

If alpha,beta, gamma are the roots of 4x^(3) - 6x^(2) + 7x + 3 = 0 then alpha beta + alpha beta + alpha gamma =

If alpha,beta,gamma are the roots of the equation 2x^(3)-5x^(2)+3x-1=0, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha) is

If alpha , beta , gamma are the roots of x^3 +2x^2 -3x -1=0 then alpha^(-2) + beta^(-2) + gamma^(-2)=

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))