Home
Class 12
MATHS
" If "(x=sin^(-1)2" and "y=log(1-t^(2)),...

" If "_(x=sin^(-1)2" and "y=log(1-t^(2))," then "(d^(2)y)/(dx^(2))|,)," is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin^(-1)t and y=log(1-t^(2)), then ((d^(2)y)/(dx^(2)))_(t=(1)/(2)) is

If x = sin^(-1)t and y = log (1 - t^2) , then (d^2 y)/(dx^2)|_(t=1//2) is

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=

if x=log_(e)t,t>0 and y+1=t^(2) then (d^(2)y)/(dx^(2))

If y=log(sin x), find (d^(2)y)/(dx^(2))

If x=a sin t and y=a(cos t+log tan(t)/(2)) find (d^(2)y)/(dx^(2))

If x=cos^(-1)t,y=log(1-t^(2))," then "((dy)/(dx))" at "t=(1)/(2) is

If sin(x+y)+cos (x+y)=log(x+y) , then (d^(2)y)/(dx^(2))=