Home
Class 12
MATHS
If theta is an acute angle and tan the...

If `theta` is an acute angle and `tan theta =1/sqrt7` , then the value of `(cosec^2 theta-sec^2theta)/(cosec^2theta+sec^2 theta)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta= 1/sqrt5 , find the value of cosec^2 theta-sec^2 theta

If tan theta =(1)/(sqrt(7)) , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

Given tantheta=1/sqrt3 , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

If tan theta = 1/sqrt7 " then" ((cosec^(2) theta -sec^(2) theta))/((cosec^(2)theta + sec^(2) theta)) is equal to

If tan theta=1/ sqrt7 , then ((cosec^2 theta-sec^2 theta)/(cosec^2 theta+sec^2 theta)) =

If tan theta =(1)/(sqrt(5)), " write the value of " (("cosec"^(2)theta-sec^(2)theta))/(("cosec"^(2)theta+sec^(2)theta)).

If tantheta=1/(sqrt7) , show that (cosec^(2)theta-sec^(2)theta)/(cosec^(2)theta+sec^(2)theta)=3/4

If tan theta = 1/(sqrt(11)) and 0 < theta < pi/2 , then the value of ("cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) is

Write the value of (tan^(2)theta-sec^(2)theta)/(cot^(2)theta-"cosec"^(2)theta).