Home
Class 12
MATHS
[" 17.Let "g(x)" bethe inverse of "f(x)"...

[" 17.Let "g(x)" bethe inverse of "f(x)" and "f(x)=int_(3)^(x)(1)/(sqrt(t^(4)+3t^(2)+13))dt" then "g'(0)=],[[" A) "(1)/(sqrt(13))," B) "11," C) "121," D) "(1)/(13)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x) be inverse of f(x) and f(x) is given by f(x)=int_(3)^(x)(1)/(sqrt(t^(4)+3t^(2)+13))dt then g^(1)(0)=

Let g(x) be inverse of f(x) and f(x) is given by f(x)=int_3^x1/(sqrt(t^4+3t^2+13))dt then g^1(0)=

If f(x)=e^(g(x)) and g(x)=int_(2)^(x)(dt)/(1+t^(4)) then f'(2) is equal to

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then