Home
Class 12
MATHS
a+b+c=0,t h e n(a^2)/(b c)+(b^2)/(a c)+(...

`a+b+c=0,t h e n(a^2)/(b c)+(b^2)/(a c)+(c^2)/(a b)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle A B C , right angled at C ,t a n A+t a n B is equal to a. a+b b. (c^2)/(a b) c. (a^2)/(b c) d. (b^2)/(a c)

If a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b) is always

If (a)/(b+c)+(b)/(c+a)+(c)/(a+b)=0 then prove that (a^(2))/(b+c)+(b^(2))/(c+a)+(c^(2))/(a+b)=0

If a,b,c gt 0, then (a )/(2a + b +c ) = (b)/(a + 2b +c)= (c )/(a +b + 2c) = ?

If a,b,c are in H.P., then (c^(2)(b-a)^(2)+a^(2)(c-b)^(2))/(b^(2)(a-c)^(2)) =

If a, b, c are in H.P., then the equation a(b-c) x^(2) + b(c-a)x+c(a-b)=0

If a, b, c are in H.P., then the equation a(b-c) x^(2) + b(c-a)x+c(a-b)=0

If fig shows the graph of f(x)=a x^2+b x+c ,t h e n Fig A) a c 0 c) a b >0 d ) a b c<0

If a , b ,c in Ra n da(a+b)+b(b+c)+c(c+a)=0 then a. a=b=c=0 b. a+b+c+=0 c. (a-b)^2+(b-c)^2+(c-a)^2=0 d. a^3+b^3+c^3+3a b c=0