Home
Class 11
MATHS
Let f : R rarr[-1,oo] and f(x)= ln([|sin...

Let `f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|])` (where[.] is greatest integer function), then -

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If f(x)=cos|x|+[|(sin x)/(2)|], ,(where [.] denotes the greatest integer function),then f(x) is

Let f: (2,4) rarr (1,3) where f(x) = x - [x//2] (where [ .] denotes the greatest integer function), then f^(-1)(x) is

If f : R to [-1, 1] , where f(x)=sin(pi/2[x]) (where [.] denotes the greatest integer function), then the range of f(x) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Let f:R rarr A defined by f(x)=[x-2]+[4-x], (where [] denotes the greatest integer function).Then