Home
Class 12
MATHS
If sqrt(2) cos A=cosB+cos^(3)B, and sqrt...

If `sqrt(2) cos A=cosB+cos^(3)B,` and `sqrt(2)sinA=sinB-sin^(3)B ` then `sin(A-B)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(2)cos A = cos B + cos^(3)B , and sqrt(2)sin A = sin B- sin^(3)B then sin(A-B)=

sqrt(2)cos A=cos B+cos^(3)B, and sqrt(2)sin A=sin B-sin^(3)B then sin(A-B)+-1(b)+-(1)/(2)(c)+-(1)/(3)(d)+-(1)/(4)

If sqrt(2)cos A=cos B+cos^3B ,a n dsqrt(2)sinA=sinB-sin^3B then sin(A-B) =

If angles A and B satisfy sqrt(2)cosA = cosB + cos^(3)B and sqrt(2)sinA = sinB- sin^(3)B , then the value of 1620 sin^(2) (A-B) is ……………..

If angles A and B satisfy sqrt(2)cosA = cosB + cos^(3)B and sqrt(2)sinA = sinB- sin^(3)B , then the value of 1620 sin^(2) (A-B) is ……………..

If sqrt2 cos A = cos B + cos^(3) B "and" sqrt2 sin A = sin B - sin^(3) B, "then the value of" sin (A - B) "will be"

sqrt (2) cos A = cos B + cos ^ (3) Bsqrt (2) sin A = sin B-sin ^ (3) B, find sin (AB)

If sinA+sinB=C,&cosA+cosB=D , then sin(A+B)=?

If sinA+cosB=a and sinB+cosA=b then sin(A+B)=