Home
Class 12
MATHS
If a1, a2, a3, a4, a5 are positive real...

If `a_1, a_2, a_3, a_4, a_5` are positive real numbers in `A.P.` and `a_1.a_2. a_4.a_5 = 16`, then the minimum value of `a_3` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1, a_2 , a_3 and a_4 be in AP. If a_1 + a_4 =10 and a_2. a_3 =24 , then the least term of the AP, is

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

a_1,a_2, a_3, ,a_n are in A.P. and a_1+a_3+a_5+a_7+a_9=20 then a_5 is 2 2. 7 3. 3 4. 4 5. 5

a_1, a_2, a_3 …..a_9 are in GP where a_1 lt 0, a_1 + a_2 = 4, a_3 + a_4 = 16 , if sum_(i=1)^9 a_i = 4 lambda then lambda is equal to

If a_1,a_2,a_3,. . . ,a_n. . . are in A.P. such that a_4−a_7+a_10=m , then sum of the first 13 terms of the A.P.is