Home
Class 11
MATHS
" (iv) "y=log[(x+sqrt(x^(2)+a^(2)))/(sqr...

" (iv) "y=log[(x+sqrt(x^(2)+a^(2)))/(sqrt(x^(2)+a^(2))-x)]=1

Promotional Banner

Similar Questions

Explore conceptually related problems

y = log((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))

y = log((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))

If y=log((x+sqrt(x^(2)+a^(2)))/(-x+sqrt(x^(2)+a^(2))))"then "dy/dx=

(log(x+sqrt(x^(2)+1)))/(x) is

If y=x/2 sqrt(a^(2)+x^(2)) +a^(2)/2 log(x+sqrt(x^(2)+a^(2))) , then (dy)/(dx)=

If y=x/2 sqrt(a^(2)+x^(2)) +a^(2)/2 log(x+sqrt(x^(2)+a^(2))) , then (dy)/(dx)=

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

y=log[(x+sqrt(x^(2)+25))/(sqrt(x^(2)+25)-x)], find (dy)/(dx)