Home
Class 12
MATHS
Let alpha be a variable parameter, then ...

Let `alpha` be a variable parameter, then the length of the chord of the curve: `(x-sin^-1 alpha)(x-cos^-1 alpha)+(y-sin^-1 alpha)(y+cos^-1 alpha)=0` along the line `x=pi/4` can not be equal to

Text Solution

Verified by Experts

length=`|y_2-y_1|`
`(pi/4-sin^(-1)alpha)(pi/4-cos^(-1)alpha)+(y-sin^(-1)alpha(y+cos^(-1)alpha)=0`
`pi^2/6-pi/4(sin^(-1)alpha+cos^(-1)alpha)+y^2+(cos^(-1)alpha-sin^(-1)alpha)y=0`
`y^2+(cos^(-1)alpha-sin^(-1)alpha)y-pi^2/16=0`
`y_1+y_2=sin^(-1)alpha-cos^(-1)alpha=2sin^(-1)alpha-pi/2`
`y_1y_2=-pi^2/16`
`|y_1-y_2|=sqrt(y_1-y_2)^2` `sqrt((y_1+y_2)^2-4y_1y_2)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the perpendicular from the origin on the line (x sin alpha)/(b ) - (y cos alpha)/(a )-1=0 is

Prove that: int_(0)^( pi)(x)/(1-cos alpha sin x)dx=(pi(pi-alpha))/(sin alpha)

The locus of the intersection point of x cos alpha+y sin alpha=a and x sin alpha-y cos alpha=b is

Find the length of perpendicular from the point (a cos alpha, a sin alpha) to the line x cos alpha+y sin alpha=p .

Find the length of perpendicular from the point (a cos alpha, a sin alpha) to the line x cos alpha+y sin alpha=p .

Locus of the point of intersection of the lines x cos alpha+y sin alpha=a and x sin alpha-y cos alpha=b where alpha is variable.

If 2(sin alpha)/(1+cos alpha+sin alpha)=y then value of (1-cos alpha+sin alpha)/(1+sin alpha) is

Locus of the point of intersection of lines x cos alpha+y sin alpha=a and x sin alpha-y cos alpha=a(alpha in R) is