Home
Class 12
MATHS
" (ii) If "sin x=y sin(x+a)," prove that...

" (ii) If "sin x=y sin(x+a)," prove that "(dy)/(dx)=(sin a)/(sin^(2)(x+a))

Promotional Banner

Similar Questions

Explore conceptually related problems

if sin x=y sin(x+b) show that (dy)/(dx)=(sin b)/(sin^(2)(x+b))

If sin x = y sin (x + b) , show that (dy)/(dx) = (sin b)/(sin^2 (x + b))

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If siny=x sin(a+y) , prove that, (dy)/(dx)=(sin a)/(1-2x cos a +x^(2)) .

If y,=x sin y, prove that (dy)/(dx),=(sin y)/((1-x cos y))

If sin y = x sin(a+y), than prove that dy/dx=(sin^2(a+y))/sina

If y = x sin(a+y), prove that dy/dx = (sin^2(a+y))/(sin(a+y)-ycos(a+y))

If sin y=x sin(a+y), then show that: (dy)/(dx)=(sin a)/(1-2x cos a+x^(2))