Home
Class 11
MATHS
" The value of "81^(((1)/(log(5)3)))+27^...

" The value of "81^(((1)/(log_(5)3)))+27^(log_(9)36)+3^((4)/(log_(7)9))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 81^((1)/(log_(5)(3)))+27^(log_(9)(36))+3^((4)/(log7)(9))

Find the value of 81^((1/log_(5)3))+(27^(log_(9)36))+3((4)/(log_(9)9))

The value of OF 81^(1/(log_5(3)))+27^(log_9(36))+3^(4/(log_7(9))) is equal to (a) 49 ((b)625 (c) 216 (d) 890

Evaluate: 81^(1//log_(5)3) + 27^(log_(9)36) + 3^(4//log_(l)9)

Evaluate: 81^(1//log_(s)3) + 27^(log_(g)36) + 3^(4//log_(l)9)

Find the value of 3^((4)/(log_(2)9))+27^((1)/(log_(49)9))+81^((1)/(log_(4)3))

Find the value of 3^((4)/(log_(2)9))+27^((1)/(log_(49)9))+81^((1)/(log_(4)3))

(1)/(log_(3)2)+(2)/(log_(9)4)-(3)/(log_(27)8)=0

The value of (log_(3) 5 xx log_(25) 27 xx log_(49) 7)/(log_(81)3) is

Find the value of (log_(3)4)(log_(4)5)(log_(5)6)(log_(6)7)(log_(7)8)(log_(8)9)