Home
Class 6
MATHS
" (x) "lim(n rarr-oo)(1^(3)+2^(3)+3^(3)+...

" (x) "lim_(n rarr-oo)(1^(3)+2^(3)+3^(3)+cdots+n^(3))/(n^(4))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(n(1^(3)+2^(3)+3^(3)+cdots n^(3))^(2))/((1^(2)+2^(2)+3^(2)+cdots+n^(2))^(3)) =

lim_(n rarr oo)(2^(3n))/(3^(2n))=

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

Evaluate the following limit: (lim)_(n rarr oo)(1^(3)+2^(3)+n^(3))/((n-1)^(4))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + 3 ^ (3) ++ n ^ (3)) / (n ^ (2) (n ^ (2) +1))

Value of lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + 3 ^ (3) ... + n ^ (3)) / (n ^ (4))