Home
Class 12
MATHS
" 22/1f "int(2x^(2)+3.dx)/((x^(2)-1)(x^(...

" 22/1f "int(2x^(2)+3.dx)/((x^(2)-1)(x^(2)-4))=log((x-2)/(x+2))^(a)((x+1)/(x-1))^(b)+c" then the "

Promotional Banner

Similar Questions

Explore conceptually related problems

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

If int((2x^(2)+1)dx)/((x^(2)-4)(x^(2)-1))=log[((x+1)/(x-1))^(a)((x-2)/(x+2))^(b)]+c , then the values of a and b are respectively

If int (2x^(2)+3)/((x^(2)-1)(x^(2)+4)) dx = a log((x-1)/(x+1)) +b tan^(-1) (x/2) +c then the values of a and b are

int(x ln x)/((x^(2)-1)^((3)/(2)))dx

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C

int(1)/(x(x^((3)/(2))+1))dx=(2)/(3)log((x^((3)/(2)))/(x^((3)/(2))+1))+c