Home
Class 12
MATHS
If x, y, z are different and Delta=|[x,x...

If x, y, z are different and `Delta=|[x,x^2, 1+x^3],[y, y^2,1+y^3],[z, z^2, 1+z^3]|=0`, then show that `1+xyz=0`

Text Solution

AI Generated Solution

To solve the problem, we need to show that if the determinant \(\Delta = \begin{vmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} = 0\), then it follows that \(1 + xyz = 0\). ### Step-by-Step Solution: 1. **Write the Determinant**: \[ \Delta = \begin{vmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise MISCELLANEOUS EXERCISE|19 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.6|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

If x,y,z are different and Delta=det[[x,x^(2),1+x^(3)y,y^(2),1+y^(3)z,z^(2),1+z^(3)]]=0 then show that 1+xyz=0]|

If x,y,z are different and Delta=|{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0 , show that : (i) 1+xyz=0 (ii) xyz=-1

If x,y,z are different and Delta=det[[x,x^(2),x^(3)-1y,y^(2),y^(3)-1z,z^(2),z^(3)-1]]=0, then using properties of determinants,show that xyz=1

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)

If x,y,z are distinct and |(x, x(x^2+1), x+1),(y,y(y^2+1), y+1),(z, z(z^2+1), z+1)|=0 then (A) xyz=0 (B) x+y+z=0 (C) xy+yz+zx=0 (D) x^2+y^2+z^2=1

If xneynez" and " |{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0, then xyz =

Prove that [[x, x^2 , 1+px^3], [y, y^2, 1+py^3] ,[z, z^2, 1+pz^3]] = (1+pxyz)(x-y)(y-z)(z-x)

NCERT-DETERMINANTS-SOLVED EXAMPLES
  1. Find the area of the triangle whose vertices are (3, 8),(-4, 2)and (5,...

    Text Solution

    |

  2. Prove that |b+c a a b c+a b cc a+b|=4a b c

    Text Solution

    |

  3. If x, y, z are different and Delta=|[x,x^2, 1+x^3],[y, y^2,1+y^3],[z, ...

    Text Solution

    |

  4. Find the equation of the line joining A( 1,3) and B (0,0) using deter...

    Text Solution

    |

  5. Find the minor of element 6 in the determinant Delta=|[1, 2, 3],[ 4, 5...

    Text Solution

    |

  6. The sum of three numbers is 6. If we multiply third number by 3 and a...

    Text Solution

    |

  7. Solve the following system of equations by matrix method. 3x-2y + 3z=...

    Text Solution

    |

  8. Solve the system of equations 2x + 5y = 1 and 3x + 2y = 7.

    Text Solution

    |

  9. Show that the matrix A=[[2,3],[ 1,2]]satisfies the equation A^2-4A+I=...

    Text Solution

    |

  10. If A=[(2,3),(1,-4)]and B=[(1,-2),(-1, 3)], then verify that (A B)^(-1)...

    Text Solution

    |

  11. If A=[[1 ,3 ,3],[ 1, 4 ,3],[ 1, 3, 4]],then verify thatA a d j A = |A|...

    Text Solution

    |

  12. Find adj for A=[[1 ,2],[ 3 ,4]]

    Text Solution

    |

  13. Find minors and cofactors of the elements of the determinant|[2,-3, 5...

    Text Solution

    |

  14. Find minors and cofactors of the elements a(11), a(21) in the determi...

    Text Solution

    |

  15. Find minors and cofactors of all the elements of the determinant |[1,...

    Text Solution

    |

  16. If a, b, c are positive and unequal, show that value of the determina...

    Text Solution

    |

  17. If a,b,c are in A.P, find value of |[2y+4,5y+7,8y+a],[3y+5,6y+8,9y+b],...

    Text Solution

    |

  18. Show that Delta=|((y+z)^2,xy,zx),(xy,(x+z)^2,yz),(xz,yz,(x+y)^2)|=2xyz...

    Text Solution

    |

  19. Use product [1-1 2 0 2-3 3-2 4][-2 0 1 9 2-3 6 1-2]to solve the syste...

    Text Solution

    |

  20. Prove that Delta=|[a+bx, c+dx, p+qx],[ax+b, cx+d, px+q],[u ,v, w]|=(1-...

    Text Solution

    |