Home
Class 12
MATHS
7log(10/9) - 2log(25/24) + 3log(81/80) =...

`7log(10/9) - 2log(25/24) + 3log(81/80) = log2`

Text Solution

Verified by Experts

`log(10/9)^7-log(25/24)^2+log(81/80)^3`
`log(10/9)^7/(25/24)^2*(81/80)^3`
`log(10^7*(2*2*2*3)^2*9^6)/(9^7*5^4*10^3^8^3)`
`log(2^4*5^4*2^6*3^2)/(3^2*5^4*2^9)`
`logg2^10/2^9`
`log2`.
Promotional Banner

Similar Questions

Explore conceptually related problems

prove that log2 + 16 log(16/15) + 12 log(25/24) + 7 log(81/80) = 1

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .

The value of 7log(16/15)+5log(25/24)+3log(81/80)=

Prove that log2+16log (16/15)+12log(25/24)+7log(81/80)=1

Prove that "log" 2 + 16 "log" (16)/(15) + 12 "log " (25)/(24) + 7 "log"(81)/(80) = 1 .

show that 7log((16)/(15))+5log((25)/(24))+3log((81)/(80))=log2