Home
Class 12
MATHS
Let f(x)=px+qandg(x)=mx+n." Then "f(f(x)...

Let `f(x)=px+qandg(x)=mx+n." Then "f(f(x))=g(f(x))` is equivalent to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

If f(x) = ax+b and g(x) = cx+d then f(g(x)) = g(f(x)) is equivalent to

if f(x) =ax +b and g(x) = cx +d , then f[g(x) ] - g[f(x) ] is equivalent to

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

If f(x)=px+q and g(x)=rx+s and f[g(x)]=g[f(x)]hArr