Home
Class 12
MATHS
Find the domain of the function f(x)=(1)...

Find the domain of the function `f(x)=(1)/([x]^(2)-7[x]-8)`, where [.] represents the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

The domain of the function f(x)= ln([[x]]/(5-[x])) where [ . ] denotes the greatest integer function is

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1], where [.] represents the greatest integer function

The domain of the function f(x)=([x+3]-x)/([x-5](x-[x])) is (where [ ] is the greatest integer function