Home
Class 12
MATHS
int (sinx-cosx)/(sqrt(1-sin2x))e^(sinx)c...

`int (sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cos x dx`, where `[x in (pi/4,(3pi)/4)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

Integrate int((sinx-cosx)/(sqrt(1-sin2x))e^(sinx).cosx dx

int_(0)^((pi)/2)(sinx+cosx)/(sqrt(1+sin2x))dx=

int_(0)^((pi)/2)(sinx+cosx)/(sqrt(1+sin2x))dx=

int(cosx+sinx)/(sqrt(1+sin2x))dx,x in[-(pi)/(4),(3pi)/(4)]

underset0 overset pi/4 int (sinx-cosx)/(sqrt(1-sin2x))dx =

int_(0)^(pi//4)(sinx+cosx)/(3+sin2x)dx=