Home
Class 11
MATHS
If tan^(-1)4 = 4 tan^-l x, then x^4 + x^...

If `tan^(-1)4 = 4 tan^-l x,` then `x^4 + x^3 - 6 x^2 - x + 4` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

solve tan^(-1) 2x + tan^(-1) 3x = pi/4 , if 6x^2 lt 1 .

If 3 tan 2 x - 4 tan 3 x = tan ^(2) 3 x tan 2 x then x =

tan 4x = (4 tan x (1- tan ^(2) x ))/( 1 - 6 tan ^(2) x + tan ^(4) x)

tan 4x = (4 tan x (1- tan ^(2) x ))/( 1 - 6 tan ^(2) x + tan ^(4) x)

tan 4x = (4 tan x (1- tan ^(2) x ))/( 1 - 6 yan ^(2) x + tan ^(4) x)

The value lim_(x to tan^(-1) 3) (tan^6 x- 2tan^5 x - 3tan^4 x)/(tan^2 x -4 tan x+3)

If x=tan((11 pi)/(8)), then the value of 4x^(4)-4x^(3)+6x^(2)-4x, is equal to

If sec x + sec^(2) x = 1 then the value of tan^(8) x - tan^(4) x - 2 tan^(2) x +1 will be equal to 0

tan^(-1)((2x-1)/(10))+tan^(-1 )(1/(2x))=(pi)/(4) , then x is equal to