Home
Class 12
MATHS
If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A...

If `A=((2,-3,5),(3,2,-4),(1,1,-2))` find `A^(-1)`. Use it to solve the system of equations
`2x-3y+5z=11` , `3x+2y-4z=-5` and `x+y-2z=-3`

Text Solution

Verified by Experts

Writing equation as `AX=B`

`[(2,-3,5),(3,2,-4),(1,1,-2)][[x],[y],[z]]=[[11],[-5],[-3]]`

Hence,
`A=[(2,-3,5),(3,2,-4),(1,1,-2)], X=[[x],[y],[z]] & B=[[11],[-5],[-3]]`

Calculating `|A|`

`|A|=|(2,-3,5),(3,2,-4),(1,1,-2)|`

` " " " " =2[-4+4]-3[6-5]+1[12-10]`

` " " " " =2[0]-3[1]+1[2]`

` " " " " =-1`

So, `|A| ne 0`

`therefore` The system of equation is consistent & has a unique solution

Now,

`AX=B`

`X=A^(-1)B`


Calculating `A^(-1)`

Now, `A^(-1)= 1/|A| adj(A)`

`adj A=[[A_11,A_21,A_31],[A_12,A_22,A_32],[A_13,A_23,A_33]]`


`A=[(2,-3,5),(3,2,-4),(1,1,-2)]`

Now,

`A_11=-4+4=0`
`A_12=-[-6-(-4)]=-(-6+4)=-(-2)=2`
`A_13=3-2=1`

`A_21=-(6-5)=-1`
`A_22=-4-5=-9`
`A_23=-[2-(-3)]=-5`

`A_31=12-10=2`
`A_32=-(-8-15)=23`
`A_33=4-(-9)=13`

Thus `adj A=[[0,-1,2],[2,-9,23],[1,-5,13]]`

Now, `A^(-1)= 1/|A| adj(A)`

`A^(-1)=1/(-1) [[0,-1,2],[2,-9,23],[1,-5,13]]=[[0,1,-2],[-2,9,-23],[-1,5,-13]]`

Solving `X=A^(-1)B`

`[[x],[y],[z]]=[[0,1,-2],[-2,9,-23],[-1,5,-13]][[11],[-5],[-3]]`

`[[x],[y],[z]]=[[0(11)+1(-5)+(-2)(-3)],[2(11)+9(-5)+(-23)(-3)],[-1(11)+5(-5)+(-13)(-3)]]`

`[[x],[y],[z]]=[[1],[2],[3]]`

`therefore` `x=1, " y=2 &z=3`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise SOLVED EXAMPLES|34 Videos
  • DETERMINANTS

    NCERT|Exercise MISCELLANEOUS EXERCISE|19 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,-3,5],[3,2,-4],[1,1,-2]], find A^(-1). Using A^(-1) solve the following system of equations: 2x-3y+5z=16;3x+2y-4z=-4;x+y-2z=-3

Using matrices,solve the following system of equations: 2x-3y+5z=11,3x+2y-4z=-5,x+y-2z=-3

If A=[[2,-3,53,2,-41,1,-2]], find A^(-1) Using A^(-1) solve the following system of equations : 2x-3y+5z=16:3x+2y=-4;x+y-2z=-

2x-3y+5z=16, 3x+ 2y-4z= -4, x + y - 2z =- 3.

If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1) . Hence, solve the system of equations : 3x+3y+2z=1 , x+2y=4 , 2x-3y-z=5

Solve the following system of equations: 2x-3y+5z=11, 5x+2y-7z=-12, -4x+3y+z=5

The system of equations x+2y-4z=3,2x-3y+2z=5 and x -12y +16z =1 has

If A=[[1,3,4],[2,1,2],[5,1,1]] , find A^(-1) . Hence solve the system of equations : x+3y+4z=8, 2x+y+2z=5 and 5x+y+z=7

The solution of the system of equations is x-y+2z=1,2y-3z=1 and 3x-2y+4y=2 is