Home
Class 12
MATHS
The diagonals of the parallelogram ABCD ...

The diagonals of the parallelogram ABCD intersect at E. If `vec a,vec b,vec c` and `vec a` be the position vectors of its vertices with respect to an arbitrary origin O, then show that `vec a+vec b+vec c+vec d=4 vec(OE)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

The diagonals of the parallelogram ABCD intersect at E. If vec(a), vec(b), vec(c) " and " vec(d) be the position vectors of its vertices with respect to an arbitary origin O, then show that vec(a)+vec(b)+vec(c)+vec(d)=4vec(OE) .

If vec a ,\ vec b ,\ vec c are the position vectors of the vertices of an equilateral triangle whose orthocentre is the origin, then write the value of vec a+ vec b+ vec c

If vec a,vec b,vec c are the position vectors of the vertices of an equilateral triangle whose orthocentre is t the origin,then write the value of vec a+vec b+vec *

If vec a , vec b , vec c and vec d are the position vectors of points A, B, C, D such that no three of them are collinear and vec a + vec c = vec b + vec d , then ABCD is a

If vec a, vec b, vec c, vec d respectively are the position vectors representing the vertices A, B, C, D of a parallelogram then write vec d in terms of vec a, vec b and vec c

If vec a ,\ vec b ,\ vec c are position vectors of the vertices A ,\ B\ a n d\ C respectively, of a triangle A B C ,\ write the value of vec A B+ vec B C+ vec C Adot

If vec a,vec b,vec c are the position vectors of points A,B,C and D respectively such that (vec a-vec d)*(vec b-vec c)=(vec b-vec d)*(vec c-vec a)=0 then D is the

If vec a ,\ vec b ,\ vec c are three vectors such that vec adot vec b= vec adot vec c then show that vec a=0\ or ,\ vec b=c\ or\ vec a_|_( vec b- vec c)dot

If vec a,vec b and vec c be any three vectors then show that vec a+(vec b+vec c)=(vec a+vec b)+vec c

vec a,vec b,vec c,vec d are the position vectors of the four distinct points A,B,C, D respectively.If vec b-vec a=vec c-vec d, then show that ABCD is a parallelogram.