Home
Class 12
PHYSICS
Two vector vec(a)=3hat(i)+8hat(j)-2hat(k...

Two vector `vec(a)=3hat(i)+8hat(j)-2hat(k)` and `vec(b)=6hat(i)+16hat(j)+xhat(k)` are such that the component of `vec(b)`perpendicular to `vec(a)` is zero. Then the value of `x` will be `:-`

A

`8`

B

`-4`

C

`+4`

D

`-8`

Text Solution

Verified by Experts

The correct Answer is:
B

`vec(a)` and `vec(b)` have to be parallel
`(3)/(6)=(8)/(16)=(-2)/(x) rArr x=-4`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec a=hat i+2hat j+hat k,vec b=2hat j+hat k-hat i, Then component of vec a perpendicular to vec b is