Home
Class 12
PHYSICS
If vec(A)=2hat(i)+hat(j)+hat(k) and vec...

If `vec(A)=2hat(i)+hat(j)+hat(k)` and `vec(B)=hat(i)+2hat(j)+2hat(k)`, find the magnitude of compinent of `(vec(A)+vec(B))` along `vec(B)`

A

`4` unit

B

`5` unit

C

`6` unit

D

`7` unit

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the component of the vector \(\vec{A} + \vec{B}\) along the vector \(\vec{B}\). ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{A} = 2\hat{i} + \hat{j} + \hat{k} \] \[ \vec{B} = \hat{i} + 2\hat{j} + 2\hat{k} \] 2. **Calculate \(\vec{A} + \vec{B}\)**: \[ \vec{A} + \vec{B} = (2\hat{i} + \hat{j} + \hat{k}) + (\hat{i} + 2\hat{j} + 2\hat{k}) \] \[ = (2 + 1)\hat{i} + (1 + 2)\hat{j} + (1 + 2)\hat{k} \] \[ = 3\hat{i} + 3\hat{j} + 3\hat{k} \] 3. **Find the magnitude of \(\vec{A} + \vec{B}\)**: \[ |\vec{A} + \vec{B}| = \sqrt{(3)^2 + (3)^2 + (3)^2} = \sqrt{27} = 3\sqrt{3} \] 4. **Calculate the magnitude of \(\vec{B}\)**: \[ |\vec{B}| = \sqrt{(1)^2 + (2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] 5. **Calculate the dot product \((\vec{A} + \vec{B}) \cdot \vec{B}\)**: \[ (\vec{A} + \vec{B}) \cdot \vec{B} = (3\hat{i} + 3\hat{j} + 3\hat{k}) \cdot (\hat{i} + 2\hat{j} + 2\hat{k}) \] \[ = 3 \cdot 1 + 3 \cdot 2 + 3 \cdot 2 = 3 + 6 + 6 = 15 \] 6. **Find the component of \(\vec{A} + \vec{B}\) along \(\vec{B}\)**: The component of \(\vec{A} + \vec{B}\) along \(\vec{B}\) is given by: \[ \text{Component} = \frac{(\vec{A} + \vec{B}) \cdot \vec{B}}{|\vec{B}|} \] \[ = \frac{15}{3} = 5 \] 7. **Magnitude of the component**: Since we are asked for the magnitude of the component, it is simply: \[ \text{Magnitude of the component} = 5 \] ### Final Answer: The magnitude of the component of \((\vec{A} + \vec{B})\) along \(\vec{B}\) is \(5\).

To solve the problem, we need to find the magnitude of the component of the vector \(\vec{A} + \vec{B}\) along the vector \(\vec{B}\). ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{A} = 2\hat{i} + \hat{j} + \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

vec(A)=(hat(i)-2hat(j)+6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) , find the cross product between vec(A) and vec(B) .

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

vec(A)=hat(j)-2hat(i)+3hat(k) " , "vec(B)= hat(i)+2hat(j)+2hat(k) find vec(A).vec(B)

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

ALLEN-TEST PAPER-Exercise (Physics)
  1. The figure below shows a graph of potential energy U(s) verses positio...

    Text Solution

    |

  2. A force F acting on a body depends on its displacement x as Fpropx^(a)...

    Text Solution

    |

  3. If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k), fi...

    Text Solution

    |

  4. An insect starts from (2,3,4) and travels along (hat(i)+2hat(j)+2hat(k...

    Text Solution

    |

  5. For the given vector vec(A)=3hat(i)-4hat(j)+10hat(k), the ratio of mag...

    Text Solution

    |

  6. In the arrangement shown in figure coefficient of friction between 5kg...

    Text Solution

    |

  7. A block is kept at the corner of two walls and force 3N is applied on ...

    Text Solution

    |

  8. A plank of mass 2 kg and length 1 m is placed on horizontal floor.A sm...

    Text Solution

    |

  9. A block is moving along y-axis with velocity vec(v)(A)=4hat(j) on a pl...

    Text Solution

    |

  10. A block is projected up along the line of greatest slope of an incline...

    Text Solution

    |

  11. A metal block is resting on a rough wooden surface. A horizontal force...

    Text Solution

    |

  12. A Body intially at rest, starts moving along x-axis in such a way so t...

    Text Solution

    |

  13. A particle is shifted from A to B and then from B to C where A,B and C...

    Text Solution

    |

  14. Velocity of a stone projected, 2 second before it reaches he maximum h...

    Text Solution

    |

  15. A particle is moving along x-axis whose position is given by x=4-9t+(t...

    Text Solution

    |

  16. A particle moves 21m along the vector 6hat(i)+2hat(j)+3hat(k) , then 1...

    Text Solution

    |

  17. A particle is falling freely under gravity. In frist t secnd it covers...

    Text Solution

    |

  18. For a particle moving along x-axis, speed must be increasing for the f...

    Text Solution

    |

  19. A car of mass 1000kg moves from point A to B. If kinetic energy of ca...

    Text Solution

    |

  20. Two bodies of masses m(1) and m(2) are acted upon by a constant force ...

    Text Solution

    |