Home
Class 11
PHYSICS
In the figure shown, the two projectiles...

In the figure shown, the two projectiles are fired simultaneously. The minimum distance between them during their flight is

Text Solution

Verified by Experts

Talking origin at a and x axis along AB
Velocity of A w.r.t. B
`=20sqrt(3)(cos 60 hat(i)+sin 60 hat(j))-20(cos 150hat(i)+sin 150hat(j))`
`=20sqrt(3)(1/2 hat(i)+sqrt(3)/2hat(j))-20(-sqrt(3)/2hat(i)+1/2 hat(j))=20sqrt(3)hat(i)+20hat(j)`
`tan theta=20/(20sqrt(3))=1/sqrt(3)rArr theta =30^(@)`
so `d_("min")/20=sin theta=sin 30^(@)=1/2rArr d_("min")=10 m`
Promotional Banner

Topper's Solved these Questions

  • KINEMATICS

    ALLEN|Exercise EXERCISE-01|55 Videos
  • KINEMATICS

    ALLEN|Exercise EXERCISE-02|57 Videos
  • ERROR AND MEASUREMENT

    ALLEN|Exercise Part-2(Exercise-2)(B)|22 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos

Similar Questions

Explore conceptually related problems

In the figure shown, the two projectiles are fired simultaneously. What should be the initial speed of the left side projectile for the two projectile to hit in mid-air?

Two projectiles A and B are fired simultaneously as shown in figure. They collide in air at point at time t .Then

Two cars A and B moving on two straight tracks inclined at an angle 60^(@) heading towards the crossing initially their positions are as shown in the figure. Both cars have same speed. Minimum seperation between them during their motion will be.

Two projectiles A and B are fired simu ltaneou ly as shown in Fig. 5.114. they colide in air at point at time t. then :

Two particles are projected from two high rise buildings simultaneously as shown then find minimum distance between particles.

A projectile of mass 2kg has velocities 3m//s and 4m/s at two points during its flight in the uniform gravitational field of the earth. If these two velocities are perpendicular to each other, then the minimum kinetic enerty of the particle during its flight is

Two particles are placed at some distance. If the mass of each of the two particles is doubled, keeping the distance between them unchanged, the value of gravitational force between them will be