Home
Class 12
MATHS
Given lim(x to 0)(f(x))/(x^(2))=2, where...

Given `lim_(x to 0)(f(x))/(x^(2))=2`, where `[.]` denotes the greatest integer function, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Given lim_(x rarr0)(f(x))/(x^(2))=2, where [.] denotes the greatest integer function,then lim_(x rarr0)[f(x)]=0lim_(x rarr0)[f(x)]=1lim_(x rarr0)[(f(x))/(x)] does not exist lim _(x rarr0)[(f(x))/(x)] exists

If f(x)=[2x], where [.] denotes the greatest integer function,then

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is