Home
Class 12
MATHS
Prove that: "tan"pi/(16)=sqrt(4+2sqrt(2)...

Prove that: `"tan"pi/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tanpi/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that tanpi/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

tan backslash(pi)/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Show that tan pi/16 = sqrt(4 +2 sqrt2) - (sqrt2+1) .

Prove that : tan 11^(@) 15' = sqrt(4+2sqrt(2))-sqrt(2)-1

Prove that: "tan"142""(1^0)/2=2+sqrt(2)-sqrt(3)-sqrt(6)

Prove that 2 "cos" pi/16=sqrt(2+sqrt(2+sqrt2))

Prove that ,tan7(1)/(2)@=(sqrt(4-sqrt(6)-sqrt(2)))/(sqrt(3)*sqrt(2)+sqrt(6)-4)

Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2