Home
Class 12
MATHS
The value of lim(x->0) [x^2/(sin x tan ...

The value of `lim_(x->0) [x^2/(sin x tan x)]` (Wherer `[*]` denotes greatest integer function) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

lim_(x->0) ([(-5sinx)/x]+[(6sinx)/x] .(where [-] denotes greatest integer function) is equal to

The value of the lim_(x->0)x/a[b/x](a!=0)(where [*] denotes the greatest integer function) is

The value of the lim_(x->0)x/a[b/x](a!=0)(where [*] denotes the greatest integer function) is

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is