Home
Class 10
MATHS
If x1=sqrt(3) and x(n+1)=(xn)/(1+sqrt(1+...

If `x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N` then `lim_(n->oo)2^n x_n` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If quad sqrt(3) and x_(n+1)=(x_(n))/(1+sqrt(1+x_(n)^(2))),AA n in N then lim_(n rarr oo)2^(n)x_(n) is equal to ,AA n in N

If x_1=3 and x_ +1= sqrt(2+x_n), n ge 1 , then lim_(nto oo) x_n is equal to

If x_(1)=1 and x_(n+1)=(1)/(x_(n))(sqrt(1+x_(n)^(2))-1),n>= then x_(n) is equal to

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n)),n<=1, then lim_(n rarr oo)x_(n) is

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n)),n>=1, then backslash(lim backslash)_(x rarr oo)x_(n) is (a) -1 (b) 2(c)sqrt(5)(d)3

If x_(n+1)=sqrt((1+x_n)/2) and |x_0|lt1 , n in W then lim_(n->oo)sqrt(1-x_0^2)/(x_1x_2x_3...x_(n+1)) =

Let x_(1)=1 and x_(n+1)=(4+3x_(n))/(3+2x_(n)) for n>=1 If lim_(x rarr oo)x_(n) exists finitely,then the limit is equal to