Home
Class 11
MATHS
The value of lim(x->0) (sin alpha x +sin...

The value of `lim_(x->0) (sin alpha x +sin beta x)/(e^(alpha x) -e^(beta x)`equals

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(sin alpha x-sin beta x)/(e^(alpha x)-e^(beta x))

The value of lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x)) equals

The value of lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x)) equals

lim_(x rarr0)(sin alpha x)/(tan beta x)

lim_(x rarr00)(sin alpha x)/(sin beta x)=(alpha)/(beta)

alpha beta x ^(alpha-1) e^(-beta x ^(alpha))

lim_(x rarr0)(e^(alpha x)-e^(beta x))/(sin alpha x-sin beta x)=

Let alpha, beta in R such that lim_(x ->0) (x^2sin(betax))/(alphax-sinx)=1 . Then 6(alpha + beta) equals

Let alpha, beta in R such that lim_(x ->0) (x^2sin(betax))/(alphax-sinx)=1 . Then 6(alpha + beta) equals