Home
Class 12
MATHS
Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. V...

Let `A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]`. Verify that ltbtgt (i) `[adjA]^(-1)=adj (A^(-1))`
(ii) `A^((-1)^(-1))=A`

Text Solution

Verified by Experts

`[[1,-2,1],[-2,3,-1],[1,1,5]]`
`|A|=1xx14+2xx-11+1xx-5=-13ne0`
Co-factor of A=`[[14,11,-5],[11,4,-3],[-5,-3,-1]]`
Adj.A=`[[14,11,-5],[11,4,-3],[-5,-3,-1]]`
`A^-1=1/|A|xxAdj.A=-1/13[[14,11,-5],[11,4,-3],[-5,-3,-1]]`
`|Adj.A|=14(14-9)-11(-11-15)-5(-33+20)=169ne0`
Co-factor (Adj.A)=`[[-13,-26,-13],[-26-,39,-13],[-13-,13,-65]]`
`(Adj.A)^-1=1/|Adj.A|xxAdj.(Adj.A)=1/69[[-13,-26,-13],[-26-,39,-13],[-13-,13,-65]]=1/13[[-1,2,-1],[-2,3,-1],[-1,-1,-5]]`......(1)
`Adj(A^-1)=Adj.-1/13[[14,11,-5],[11,4,-3],[-5,-3,-1]]`
`=-[[-14/13,-11/13,5/13],[-11/13-,4/13,3/13],[5/13,3/13,1/13]]`
`1/13[[-1,2,-1],[-2,3,-1],[-1,-1,-5]]`.....(2)
from `(1)` and `(2)` `(Adj.A)^-1=Adj(A^-1)`
`|A|^-1=|-1/13[[14,-11,5],[-11,-4,3],[5,3,1]]|`
=`1/13xx1/13xx1/13|[-14,-11,5],[-11,-4,-3],[5,3,1]|`
`=1/13^3xx(-14xx-13+11xx-26+5xx-13)`
`|A^-1|=1/13^3xx-169=-1/13ne0`
Cofactor of `A^-1=1/13^2[[-13,26,-13],[26,-39,-13],[-13,-13,-65]]`
`Adj.of (A^-1)=1/13^2[[-13,26,-13],[26,-39,-13],[-13,-13,-65]]=1/13[[-1,2,-2],[2,-3,-1],[-1,-1,-5]]`
`(A^-1)^-1=1/|A^-1|xxAdj.(A^-1)`
`Adj.(A^-1)=1/(-1/13)xx1/13[[-1,2,-1],[2,-3,-1],[-1,-1,-5]]`
`=[[-1,2,-1],[2,-3,-1],[-1,-1,-5]]=A`
Hence `(A^-1)^-1=A`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT|Exercise SOLVED EXAMPLES|34 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If A=[(2,-3),(4,6)] " verify that " (adj A)^(-1)=(adj A^(-1)) .

If A = {:((1,-1,2),(3,0,-2),(1,0,3)):} , verify that A (adj A) = |A|* I .

If A=[{:(1,3,3),(1,4,3),(1,3,4):}] , verify A.(adj.A)=|A|I and find A^(-1) .

If A=[{:(1, 1, 1),(1, 2, "-3"),(2,"-1",3):}] , then adj A is

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

If A=|{:(1,1,1),(1,2,-3),(2,-1,3):}| , then show that A. (ajd.A)= (adj.A)A.

If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

If A=[(2,3),(1,5)] and " verify that "(A')^(-1)=(A^(-1))' .

NCERT-DETERMINANTS-MISCELLANEOUS EXERCISE
  1. Let A=[[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], where ...

    Text Solution

    |

  2. If x, y, z are non-zero real numbers, then the inverse of matrix A=[(...

    Text Solution

    |

  3. If a, b, c, are in A.P, then the determinant |(x+2,x+3,x+2a),( x+3,x+4...

    Text Solution

    |

  4. Solve the system of equations 2/x+3/y+(10)/z=4 4/x-6/y+5/z=1 6/x+9/y-(...

    Text Solution

    |

  5. Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(a...

    Text Solution

    |

  6. Using properties of determinants. Prove that|[1 ,1+p,1+p+q],[2, 3+2p,4...

    Text Solution

    |

  7. Using properties of determinants. Prove that|[3a,-a+b,-a+c],[-b+a,3b,-...

    Text Solution

    |

  8. Using properties of determinants. Prove that|(x, x^2, 1+p x^3),( y, y^...

    Text Solution

    |

  9. Using properties of determinants. Prove that|(alpha,alpha^2,beta+gamma...

    Text Solution

    |

  10. Evaluate |[1,x, y],[1,x+y, y],[1,x,x+y]|

    Text Solution

    |

  11. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  12. Evaluate |(x, y, x+y),( y, x+y, x),( x+y, x, y)|.

    Text Solution

    |

  13. Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(...

    Text Solution

    |

  14. Evaluate |(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbet...

    Text Solution

    |

  15. If a, b and c are real numbers, and Delta=|[b+c,c+a,a+b],[c+a,a+b,b+c]...

    Text Solution

    |

  16. Solve the equation |(x+a, x,x),(x,x+a, x),(x,x,x+a)|=0, a!= 0

    Text Solution

    |

  17. Prove that |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^...

    Text Solution

    |

  18. Prove that the determinant [(x,sintheta,costheta),(-sintheta,-x,1),(co...

    Text Solution

    |

  19. If A^(-1)=[(3,-1, 1),(-15, 6,-5),( 5,-2, 2)]and B=[(1 ,2,-2),(-1, 3, 0...

    Text Solution

    |