Home
Class 14
MATHS
(2^(8)-1)/((sqrt(2))^(12))=...

`(2^(8)-1)/((sqrt(2))^(12))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((sqrt(2.88)+1.2)(sqrt(2.88-1.2)))=

Simplify : (a+sqrt(a^(2)-1))^(8)-(a-sqrt(a^(2)-1))^(8)

1+(sqrt(2)-1)/(2sqrt((2)))+(3-2sqrt(2))/12+(5sqrt(2))/24sqrt(2)...

The expression (sqrt(2x^(2)+1)+sqrt(2x^(2)-1))^(6)+((2)/((sqrt(2x^(2)+1)+sqrt(2x^(2)-1))^(square)))^(6) is polynomial of degree 6 b.8 c.10 d.12

The value of the integral int_0^2("log"(x^2+2))/((x+2)^2)dx is (sqrt(2))/3tan^(-1)(sqrt(2))+5/(12)log2-1/4log3 b. (sqrt(2))/3tan^(-1)(sqrt(2))-5/(12)log2-1/4log3 c. (sqrt(2))/3tan^(-1)(sqrt(2))+5/(12)log2+1/4log3 d. (sqrt(2))/3tan^(-1)(sqrt(2))-5/(12)log2+1/(12)log3

The value of the integral int_0^2("log"(x^2+2))/((x+2)^2)dx is (sqrt(2))/3tan^(-1)(sqrt(2))+5/(12)log2-1/4log3 b. (sqrt(2))/3tan^(-1)(sqrt(2))-5/(12)log2-1/4log3 c. (sqrt(2))/3tan^(-1)(sqrt(2))+5/(12)log2+1/4log3 d. (sqrt(2))/3tan^(-1)(sqrt(2))-5/(12)log2+1/(12)log3

sqrt(2)+(1)/(sqrt(2))+(1)/(2sqrt(2))+... to 8 terms

The value of (1)/(sqrt(12-sqrt(140)))-(1)/(sqrt(8-sqrt(60)))-(2)/(sqrt(10+sqrt(84)))

sqrt((1)/(2)+(1)/(2)sqrt((1)/(2)+(1)/(2)sqrt((1)/(2)+(1)/(2)cos8 theta)))theta=(pi)/(12)