Home
Class 7
MATHS
Property 3 if x y z be rational number...

Property 3 if ` x y z ` be rational numbers such that ` x > y and y > z` then `x > z ` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion : If x, y, z be rational numbers such that x gt y and y gt z, then x gt z. Reason : The sum of two rational numbers is always greater than third rational number.

Let x, y, z be non-zero real numbers such that x/y + y/z + z/x = 7 and y/x + z/y + x/z = 9 , then (x^3)/y^3 + y^3/z^3 + z^3/x^3 - 3 is equal to

For every rational numbers x, y and z, x+(y xx z)=(x+y) xx (x+z) .

If x, y and z are three non-zero numbers such that x + y le z -x, y + z le x -y and z + x le y -z , the maximum value of x + y + z is __________.

Let A=[(x,y,z),(y,z,x),(z,x,y)] , where x, y and z are real numbers such that x + y + z > 0 and xyz = 2 . If A^(2) = I_(3) , then the value of x^(3)+y^(3)+z^(3) is__________.

Verify the property x xx(y xx z) = (x xx y) xx z of rational numbers by using x=1, y= (-1)/(2) and z=(1)/(4) .

Verify the property x xx(y xx z) = (x xx y) xx z of rational numbers by using x=0, y=(1)/(2) .

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z