Home
Class 12
MATHS
If f(x)=sinx-x ,then int(-2pi)^(2pi)|f^...

If `f(x)=sinx-x `,then `int_(-2pi)^(2pi)|f^(-1)(x)| dx=` (A) `pi^2` (B) `2pi^2` (C) `3pi^2` (D) `4pi^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

Let a function f:R rarr R be defined as f(x)=x+sin x. The value of int_(0)^(2 pi)f^(-1)(x)dx will be (A)2 pi^(2)(B)2 pi^(2)+2(C)2 pi^(2)-2(D)pi^(2)

int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

If f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx .