Home
Class 8
MATHS
There are 2n non-perfect square numbers ...

There are 2n non-perfect square numbers between two consecutive square numbers `n^2 and (n+1)^2`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of two consecutive triangular numbers is a square number.

The difference between the squares of two consecutive numbers is 31. Find the numbers.

There are _________ natural numbers between n^2 and (n + 1)^2

Between 5^(2) and 6^2 there are _____non-perfect square numbers.

A perfect square number having n digits where n is even will have square root with

Perfect square or square number A natural number n is called a perfect square or a square number if there exists a natural number m such that n=m^(2)

The mean of the squares of the numbers 1,2,3,4, cdots n is